
Evaluating Reliability of Motion Features in Surveillance Videos

Longin Jan Latecki1, Roland Miezianko1, Dragoljub Pokrajac2
1Temple University, CIS Dept., Philadelphia, PA, latecki@temple.edu, rmiezian@temple.edu

2Delaware State University, CIS Dept., Dover, DE, dpokraja@desu.edu

ABSTRACT

Although a tremendous effort has been made to perform a
reliable analysis of images and videos in the past fifty years,
the reality is that one cannot rely 100% on the analysis results.
The only exception is applications in controlled environments
as dealt in machine vision, where closed world assumptions
apply. However, in general, one has to deal with an open
world, which means that content of images may significantly
change, and it seems impossible to predict all possible
changes. For example, in the context of surveillance videos,
the light conditions may suddenly fluctuate in parts of images
only, video compression or transmission artifacts may occur, a
wind may cause a stationary camera to tremble, and so on.
The problem is that video analysis has to be performed in
order to detect content changes, but such analysis may be
unreliable due to the changes, and thus fail to detect the
changes and lead to “vicious cycle”.

The solution pursuit in this paper is to monitor the
reliability of the computed features by analyzing their general
properties. We consider statistical properties of feature value
distributions as well as temporal properties. Our main strategy
is to estimate the feature properties when the features are
reliable computed, so that any set of features that does not
have these properties is detected as being unreliable. This way
we do not perform any direct content analysis, but instead
perform analysis of feature properties related to their
reliability.

The main effort in video analysis nowadays is still in
making the feature computation more reliable. Our claim is
that we need to accept the fact that the computed features will
never be 100% reliable, and focus our attention on computing
reliability measures. This way system decisions will only be
made when features are sufficiently reliable. This means for
an intelligent system for video analysis that in addition to
feature computation, it should perform instantaneous
evaluation of their reliability, and adapt its behavior in
accordance to the reliability. For example, if the goal of a
system is to monitor motion activity, and to signal an alarm if
the activity is high, the system is allowed to make reliable
decisions only if there exist a subset of the computed motion
activity features that is sufficiently reliable. The monitoring of
features reliability and adjusting the system behavior
accordingly, seems to be the only way to deploy autonomous
video surveillance systems.

1. INTRODUCTION
We begin by showing two examples of video content

changes that cause the existing motion detection approaches to
inaccurately detect the presence of substantial motion. Clearly,
the detected motion is present in videos, but it is due to some
content artifacts and is not due to the actual presence of
moving objects. Consequently, human observant ignores such
“motion” as irrelevant, while standard video analysis systems
detect it as significant activity. We will show that the feature
reliability methods proposed in this paper allow us to identify
the unreliable motion features, and to ignore the irrelevant
artifacts. This is possible without reducing the detection rate
of real moving objects. Consequently, we eliminate false
alarms without reducing the detection rate. We stress that this
is obtained without any direct video content analysis (e.g.,
using different features), but by monitoring the reliability of
computed features. As stated in the introduction, direct video
content analysis with further features does not solve the
problem, since these features may also become unreliable.

Our first example illustrates motion artifacts in Campus 31
video introduced by some reflections in windows that are
probably caused by cars passing by. In Fig. 1, we show two
frames from Campus 3 video, one showing real motion, and
the second showing the motion artifacts in addition to the
normal motion. Our second example, in Fig. 2(a), shows
motion artifacts introduced by video compression. The same
scene without such artifacts is shown in Fig. 2(b). This video,
which we call Temple 2, was recorded in real-world
environment by the video surveillance system of the Campus
Police Division of the Temple University.

In Section 2, we first describe a simple temporal method to
determine the reliability of motion detection. In Section 3, we
present a more sophisticated statistical method based on
distribution analysis of feature values and information theory
[21]. Both methods monitor features computed by our motion
detection approach presented in [17], which we summarize in
Section 4. The motion features are computed for gray level or
infrared videos using 3D spatiotemporal blocks of spatial size
8x8 pixels, and temporal size of 3 frames. The blocks are
disjoint in space and overlap by one frame in time. As result
we obtain motion activity values for each 8x8 block in every
video frame. By thresholding the motion activity values, we

1 Campus 3 can be obtained from the Performance Evaluation
of Tracking and Surveillance (PETS) repository:
ftp://pets.rdg.ac.uk/PETS2002//DATASET1/TESTING/CAMERA3_JPEGS/

obtain a binary feature, called motion detection, with 1
standing for ‘motion detected’ and 0 for ‘no motion detected’.
Both videos as well as our motion detection results can be
viewed on [12].

(a)

(b)

Figure 1. Two frames from Campus 3 video with moving
blocks highlighted red: (a) motion artifacts due to reflections
in the windows, (b) the same scene (a few frames later)
without the artifacts.

(a)

(b)

Figure 2. Two frames from Temple 2 video with moving
blocks highlighted red: (a) motion artifacts introduced by
video compression, (b) the same scene (a few frames later)
without the artifacts.

A temporal reliability analysis introduced in Section 2 is

applied to the motion detection feature, while a statistical
reliability analysis introduced in Section 3 is applied to the
motion activity feature.

2. TEMPORAL ANALYSIS OF FEATURE
RELIABILITY

In this section, we describe a simple temporal method to
determine the reliability of motion features. The input motion
feature has binary values for each 8x8 block for each video
frame with 1 for ‘motion detected’ and 0 for ‘no motion
detected’. The algorithm described in Section 4.2 computes
this feature vector. The 8x8 blocks are disjoint. Let f(n) be the
number of 1s in the frame number n, i.e., f(n) is the number of
detected moving blocks as function of frame number. We use
the finite difference approximation of first derivative of f to
monitor the reliability of our motion detection. In simple
words, if the jump in values of f is above a certain threshold
for a given time interval, the binary feature is unreliable in this
interval. The threshold necessary to detect the unreliable
features is not static. We propose a dynamic thresholding
algorithm described in Section 2.1 to learn and vary this
threshold. However, some other learning techniques could
also be used.

This reliability property works under the assumption that
there exists an upper bound on the size of moving objects
whose motion we want to detect (measured in the number of
moving blocks). This assumption holds for most surveillance
videos. Now we consider an example video, called Temple 2,
that satisfies this assumption. This video is recorded by a roof
mounted, stationary camera, so that a certain minimal distance
to moving objects is guaranteed. Typical moving objects there,
humans and vehicles, cannot get arbitrarily large. Hence, the
fraction of the scene occupied by a moving object is limited.
Observe that the actual value of the upper bound on the size of
moving objects needs not to be known, since our algorithm
learns it automatically.

In Fig. 3(a), we see the graph of function f for Temple 2
video. Time intervals with significant jumps of f that are
correctly identified by our dynamic thresholding are marked
with red lines in Fig. 3(b). The graph of modified feature f,
when f was set to zero within the time intervals when motion
detection was detected as unreliable is shown in Fig. 3(c). Fig.
3(c) shows that the proposed method is able to identify and
exclude the unreliable results of motion detection. By
excluding these time intervals from further processing, we not
only eliminate false alarms, but make possible to correctly
detect alarm situations, although the input motion detection in
not 100% reliable. For example, a significant increase in the
number of motion blocks after the frame 1700 indicates an
alarm situation. This is a correct prediction, since a street fight
is recorded on the video after the frame 1700, see the Temple
2 video [12].

(a)
0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

50

100

150

200

250

300

350

400
Temple2-Motion Measure per Frame

Frames

(b)
0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

50

100

150

200

250

300

350

400
Temple2-Motion Measure and Noisy Frames

Frames

(c)
0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

50

100

150

200

250

300

350

400
Temple2-Filtered Motion Measure per Frame

Frames

Figure 3. (a) The graph of f(n), which is the number of
moving blocks as function of frame number n. (b) Significant
jumps of f (caused by feature unreliability) correctly identified
by our dynamic thresholding. (c) The graph of f padded by
zeros for frames with unreliable motion detection.

2.1. DYNAMIC THRESHOLDING ALGORITHM

Now we describe a dynamic thresholding algorithm used to
detect the jumps of function f. First we compute the initial
values of mean meanl and standard deviation stdl using all
previous values of f(x) for x=1, …, t-1 and some time instance
t. The actual dynamic thresholding starts at time x=t. A jump
up is detected at points }{ wxxxx +++∈ ,..,2,1 for a
window size w if

meanrw(x) – meanl(x) > C1*stdl(x),

where C1 is a constant. A dynamic threshold values meanl and
stdl are updated if

 meanrw(x) – meanl(x) < C2*stdl(x),

where C2 < C1 is a second constant. The updated values are:

meanl(x) = u*meanl(x) + (1-u)*meanrw(x)

stdl(x) = u*stdl(x) + (1-u)*stdrw(x)

where u is a learning constant and

()∑
=

+=
w

xf
w

xmeanrw
1

1)(
τ

τ

()∑
=

−+
−

=
w

xmeanrwxd
w

xstdrw
1

2)()(
1

1)(
τ

τ .

The symmetric window constant w was set to 3, giving us

a sliding window of 7 frames (2*w+1). The learning constant
was u=0.9. Constants C1, C2 of function f used in detecting
jumps of the Temple 2 video were selected based on the initial
running average meanl and stdl. The value of meanl was 10.3
and the value of stdl was 7.4. Constant C1 was set to 15 and
constant C2 was set to 3 providing the initial jump detected
threshold to 154.5 and reset to no-jump detected threshold of
30.9.

3. STATISTICAL ANALYSIS OF FEATURE
RELIABILITY

To determine whether a particular feature is reliable, we
assume that the feature bears more information if its
distribution differs more significantly from a normal
(Gaussian) distribution. Similar heuristics are used e.g., in
Independent Components Analysis [20]. The follow-up
assumption is that the feature becomes unreliable if an
addition random noise is superimposed, which would lead the
distribution of such noisy feature to become more Gaussian
like. Hence, by measuring to what extent a feature distribution
differs from a Gaussian distribution, one can not only get
information to what extent the feature is useful but also when
such usefulness drops (e.g., due to some external and often
non-observed factor).

The Information Theory proposes negentropy as the
measure of this discrepancy. Given a probability density p(x)
of a feature, Differential Entropy is defined [18, 19] as:

() () ()dxxpxpxH ∫ −=
∞

∞−
log (1)

For a given class of distributions p(x) that have the same
variance 2σ , differential entropy is maximal for a Gaussian
distribution where it is equal

() 22 2log
2
1 σπσ eHGauss = . (2)

Hence, a negentropy, which defined as
 () ())(2 xHHxJ Gauss −= σ (3)

or its normalized value

() () ()2
2)(1/

σ
σ

Gauss
Gauss H

xHHxJ −= (4)

may be used to measure usefulness and reliability of a feature.
Observe that the minimal value of negentropy is 0 (when p(x)
is Gaussian).

A naïve approach to compute negentropy would be to
employ histograms to approximate p(x) with piecewise linear
function p’(x) such that:

 () () []xxxxxKpxp iii ∆+∈= ,,'
where K is a normalization constant (chosen such that p’(x) is
a distribution). However, as shown in [21] this non-parametric
technique is very unstable since dependent on a proper choice
of a histogram bin size x∆ and histogram centers xi. Hence we
use parametric approach suggested in Hyvarinen’s NIPS 1997
paper [18]. The main ideas of this approach are:

1) Instead of original feature x, use a standardized feature
x*=(x-mean(x))/std(x) that have zero mean and unit standard
deviation. This way, we could directly use negentropy to
compare reliability with no need to normalize with the entropy
of a Gaussian.

2) Use a first-order Taylor approximation of a logarithmic
function in eq. (1) that leads to: () () 2/1log1 2εεεε +≈++ ;

3) Use conveniently chosen set of orthogonal functions of
Gi(x) of a feature x to expand probability density function p(x)
in vicinity of a Gaussian probability density.

In practice, the choice of orthogonal functions is based on
practicability and sensitivity on outliers of the computation of
estimates for expectations E(Gi(x)), integrability of the
obtained probability density function approximation and last,
but not the least, the properties of non-Gaussian distributions
we want to capture.

Based on such consideration, [18] proposes the following
two approximations of negentropy, that we use in this paper:

() () ()
2

*
2

2
2/*

1
* 22*









−+⋅= −

π
xEkexEkxJ a

x
a

 (5a)

() () ()
2

2/
2

2
2/*

1
*

2
12*2*









−+⋅= −− x

b
x

b eEkexEkxJ (5b)

where the coefficients are determined as:

27316
24,62

24,
938

36
221 −
=

−
=

−
= ba kkk

π

. (6)

The proposed technique is applicable on any continuous
feature. In this paper, we evaluate the reliability of the motion
activity feature, defined in [17] (see Section 4) as the largest
eigenvalue of texture vectors in a small time window. For
each frame, we standardize the feature values x*, compute
expectations ()*xE , ()22/*

2*xexE −⋅ and finally compute the
negentropy approximations eq. (5a), (5b) per frame.

We evaluated the proposed techniques for assessing
feature reliability on a set of videos [12]. This set includes
infrared videos, for which the same settings of parameters as
for visual light videos were used. Here we focus on our results
on two video sequences from the Performance Evaluation of

Tracking and Surveillance (PETS) repository: a sequence
from PETS20012 here referred to as Campus 1 sequence, a
sequence from PETS2002, here referred to as the Campus 3
sequence and on a Temple 2 sequence from Temple
University.

Campus 1. At the beginning of the sequence, there is no
movement, so changes in the motion activity (an observed
feature) are random, which reflects small negentropy values in
approximately first 100 frames, see Fig 4(a). Both negentropy
approximations (eq. 5a, 5b) demonstrate strong drop between
frames 1960 and 2000 which corresponds to the higher level
of noise that can be visually observed between these frames.
Function B (eq. 5b) provides more stable approximation
values, which makes it potentially more useful.

Campus 3. Both methods identified drop around frames
330, 660, a strong drop around 700, a drop around 720 and the
relatively long-term drop between 800 and 900, see Fig. 4(b).
Finally, there were some small oscillations between 1200 and
1300 and one drop around 1400. All these events correspond
to frames in the video sequence when our algorithm has
difficulties in properly identifying moving objects based on
observed feature (e.g., due to reflections in the upper right part
of the frame, cp. Fig. 1). Again Function B (eq. 5b) performed
better, by having less oscillations and fluctuations.

Temple 2. On this video, there is evident instability
(manifested as flicker) that can be traced to applied
compression technique. The period of this disturbance, which
has negative effects on motion detection, is around 62 frames.
Using the proposed technique, we obtained negentropy values
that reflect this periodicity. Both functions eq. (5a) and (5b)
have strong periodical components, see Fig. 4(c), and
demonstrate oscillations which period can be correctly
determined using a Fast Fourier Transform [22], as
approximately 62 frames. Function (5b) is again more stable
and provides better automatic period estimation. The results of
the statistical method agree with those of the temporal
methods, cp. Fig. 3.

A common denominator of the results shown is that the

proposed negentropy-based technique can help in determining
frames when the observed feature is unreliable (periodic or
pulse flicker, noise, etc.). Since both eq. 5a and 5b are only
relatively rough approximations of negentropy, there is no
wonder they do not provide the same values, especially when
a negentropy is relatively high. As expected, when a
negentropy is low, the feature probability distribution is closer
to a Gaussian so both approximations would give similar
results. Generally, eq. (5b) provides better performance. It is
more stable and has less fluctuations. Hence is potentially
more suitable for automatic thresholding.

2ftp://pets.rdg.ac.uk/PETS2001/DATASET1/TESTING/CAMERA1_JPEGS/

4. FEATURE GENERATION AND MOTION
DETECTION

We shortly describe our motion detection method proposed
in [17]. It is based on change analysis of texture vectors
computed for 3D, spatiotemporal (sp) blocks. In our previous
paper [11] we have shown that the use of sp texture vectors of
3D blocks in the framework of Stauffer and Grimson [14] can
improve the detection of moving objects while potentially
cutting back the processing time due to the reduction of the
number of input vectors per frame. Our experimental results in
[17] (videos be viewed on [12]) show that our motion
detection technique leads to further performance
improvements.

4.1 Video representation with spatiotemporal
(sp) texture vectors

We represent videos as three-dimensional (3D) arrays of
gray level or monochromatic infrared pixel values gi,j,t at a
time instant t and a pixel location i, j. A video is characterized
by temporal dimension Z corresponding to the number of
frames, and by two spatial dimensions, characterizing number
of pixels in horizontal and vertical direction of each frame.

We divide each image in a video sequence into disjoint
NBLOCK× NBLOCK squares (e.g., 8x8 squares) that cover the
whole image. Spatiotemporal (3D) blocks are obtained by
combining squares in consecutive frames at the same video
plane location. In our experiments, we used 8x8x3 blocks that
are disjoint in space but overlap in time, i.e., two blocks at the
same spatial location at times t and t+1 have one square in
common.

The fact that the 3D blocks overlap in time allows us to
perform successful motion detection in videos with very low
time frequency, e.g., in our experimental results [12] videos
with 2 fps (frame per second) are included. The obtained 3D
blocks are represented as 192-dimensional vectors of gray
level or monochromatic infrared pixel values. We then zero
mean these vectors and project them to three dimensions using
principal component analysis (PCA). The obtained 3-
dimensional vectors form a compact spatiotemporal texture
representation for each block. The PCA projection matrices
are computed separately for all video plane locations (a set of
disjoint 8x8 squares in our experiments).

The blocks are represented by N-dimensional vectors bI,J,t,
specified by spatial indexes (I,J) and time instant t. Vectors
bI,J,t contain all values gi,j,t of pixels in the corresponding 3D
block.

To reduce dimensionality of bI,J,t while preserving
information to the maximal possible extent, we compute a
projection of the normalized block vector to a vector of a
significantly lower length K<<N using a PCA projection
matrix PK

I,J computed for all bI,J,t at video plane location (I,J).
The resulting sp texture vectors *

,, tJIb = PK
I,J*bI,J,t provide a

joint representation of texture and motion patterns in videos

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

5

6

7

8
Function A
Function B

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
0

1

2

3

4

5

6

7

8
Function A
Function B

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

8
Function A
Function B

(a)

(b)

(c)

Figure 4. Estimated negentropy per frame of each video
using (eq. 5a) in red and (eq. 5b) in blue for (a) Campus
1; (b) Campus 3; (c) Temple 2 videos.

and are used as input of algorithms for detection of moving
objects. We used K=3 in our experiments.

To compute PK
I,J we employ the principal values

decomposition following [4,5]. A matrix of all normalized
block vectors bI,J,t at video plane location (I,J) is used to
compute the N×N dimensional covariance matrix SI,J. The
PCA projection matrix PI,J for spatial location (I,J) is
computed from the SI,J covariance matrix. The projection
matrix PI,J of size N×N represents N principal components. By
taking only the principal components that corresponds to the K
largest eigenvalues, we obtain PK

I,J.

4.2 Moving objects detection based on local
variation

The assumption of the proposed technique is that the
variation of location vectors—corresponding to the same
location within a small number of consecutive frames— will
increase if the vectors correspond to a moving object. In
practice, for each location (x,y), we consider vectors

WtyxtyxWtyxWtyx bbbb ++−− ,,
*

,,
*

1,,
*

,,
* ,...,,,, K

corresponding to a symmetric window of size 2W+1 around
the temporal instant t. For these vectors, we compute the
covariance matrix tyx ,,C . We assign the largest eigenvalue of

tyx ,,C , denoted as Λx,y,t, to a given spatiotemporal video
position to define a local variance measure, which we will
also refer to as motion activity

ma(x,y,t) = Λx,y,t .
The larger the variance measure ma(x,y,t), the more likely is
the presence of a moving object at position (x,y,t). Finally, we
label each video position as moving or stationary
(background) depending whether the motion activity is larger
or smaller than a suitably defined threshold. We use a
dynamic thresholding algorithm (described in Section 2) to
determine the threshold value at position (x,y,t) based on the
history of ma(x,y,s) values over time (s=1, …, t-1).

5. CONCLUSIONS

In this paper, we proposed and evaluated two methods to
monitor the reliability of features applied in video surveillance
and motion detection. The methods have been evaluated on
real-life surveillance videos. Both methods correctly identified
time intervals when an observed feature becomes non useful
for motion detection (e.g., due to flicker, artifacts introduced
by compression algorithm, etc.). The proposed methodology is
potentially applicable to other domains where unsupervised
learning is performed under open-world assumption (where
we cannot anticipate all the events which could occur during
the operational life of an automated intelligent system).

6. ACKNOWLEDGEMENTS

D. Pokrajac has been partially supported by NIH-funded
Delaware Biomedical Research Infrastructure Network

(BRIN) Grant (P20 RR16472), and DoD HBCU/MI
Infrastructure Support Program (45395-MA-ISP Department
of Army).

7. REFERENCES
[1] Buttler, D., Sridharan, S., and Bove, V. M. Real-time
adaptive background segmentation. In Proc. IEEE Int. Conf.
on Multimedia and Expo (ICME), Baltimore 2003.
[2] R.T. Collins, A.J. Lipton, and T. Kanade, “Introduction to
the Special Section on Video Surveillance”, IEEE PAMI 22(8)
(2000), pp. 745–746.
[3] Devore, J. L., Probability and Statistics for Engineering
and the Sciences, 5th edn., Int. Thomson Publishing Company,
Belmont, 2000.
[4] Duda, R., P. Hart, and D. Stork, Pattern Classification,
2nd edn., John Wiley & Sons, 2001.
[5] Flury, B. A First Course in Multivariate Statistics,
Springer Verlag, 1997.
[6] I. Haritaoglu, D. Harwood, and L. Davis, “W4: Real-
Time Surveillance of People and Their Activities”, IEEE
PAMI 22(8) (2000), pp. 809–830.
[7] Jain, R., Militzer, D., and Nagel, H. Separating
nonstationary from stationary scene components in a sequence
of real world TV images. In Proc. IJCAI, 612–618,
Cambridge, MA, 1977
[8] Jolliffe, I. T, Principal Component Analysis, 2nd edn.,
Springer Verlag, 2002.
[9] Javed, O., Shafique, K., and Shah, M. A. Hierarchical
approach to robust background subtraction using color and
gradient information. In Proc. IEEE Workshop on Motion and
Video Computing (MOTION), 22-27, Orlando, 2002,.
[10] N. M. Oliver, B. Rosario, and A. P. Pentland, “A
Bayesian Computer Vision System for Modeling Human
Interactions”, IEEE PAMI 22(8) (2000), pp. 831–843.
[11] D. Pokrajac and L. J. Latecki: Spatiotemporal Blocks-
Based Moving Objects Identification and Tracking, IEEE
Visual Surveillance and Performance Evaluation of Tracking
and Surveillance (VS-PETS), October 2003.
[12] R. Miezianko, L. J. Latecki, D. Pokrajac. Link to test
results. http://knight.cis.temple.edu/~video/VA
[13] Remagnino, P., G. A. Jones, N. Paragios, and C. S.
Regazzoni, eds., Video-Based Surveillance Systems, Kluwer
Academic Publishers, 2002.
[14] C. Stauffer, W. E. L. Grimson, “Learning patterns of
activity using real-time tracking”, IEEE PAMI 22(8) (2000),
pp. 747–757.
[15] Westwater, R., Furht, B., Real-Time Video Compression:
Techniques and Algorithms, Kluwer Academic Publishers,
1997.
[16] C. Wren, A. Azarbayejani, T. Darrell, and A.P. Pentland,
“Pfinder: Real-time Tracking of the Human Body”, IEEE
PAMI 19(7) (1997), pp. 780–785.
[17] L. J. Latecki, R. Miezianko, and D. Pokrajac. Motion
Detection Based on Local Variation of Spatiotemporal
Texture. CVPR Workshop on Object Tracking and

Classification Beyond the Visible Spectrum (OTCBVS),
Washington, July 2004.
[18]A. Hyvärinen. New approximations of differential entropy
for independent component analysis and projection pursuit. In
Advances in Neural Information Processing Systems, volume
10, pages 273-279. MIT Press, 1998.
[19]T. M. Cover and J. A. Thomas. Elements of Information
Theory. John Wiley & Sons, 1991.

[20] A. Hyvärinen, J. Karhunen, and E. Oja. Independent
Component Analysis. Wiley, 2001.
[21] D. Pokrajac and L. J. Latecki. Entropy-Based Approach
for Detecting Feature Reliability. Invited Paper, 48th Conf. for
Electronics, Telecommunications, Computers, Automation,
and Nuclear Engineering (ETRAN). Cacak, Serbia, June 2004.
[22] E. Oran Brigham. The Fast Fourier Transform: An
Introduction to Its Theory and Application. Prentice Hall,
1973.

